Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Clin Pract ; 74(8): e13525, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-2270735

ABSTRACT

AIM: The COVID-19 pandemic is caused by infection with the SARS-CoV-2 virus. The major mutation detected to date in the SARS-CoV-2 viral envelope spike protein, which is responsible for virus attachment to the host and is also the main target for host antibodies, is a mutation of an aspartate (D) at position 614 found frequently in Chinese strains to a glycine (G). We sought to infer health impact of this mutation. RESULT: Increased case fatality rate correlated strongly with the proportion of viruses bearing G614 on a country by country basis. The amino acid at position 614 occurs at an internal protein interface of the viral spike, and the presence of G at this position was calculated to destabilise a specific conformation of the viral spike, within which the key host receptor binding site is more accessible. CONCLUSION: These results imply that G614 is a more pathogenic strain of SARS-CoV-2, which may influence vaccine design. The prevalence of this form of the virus should also be included in epidemiologic models predicting the COVID-19 health burden and fatality over time in specific regions. Physicians should be aware of this characteristic of the virus to anticipate the clinical course of infection.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/mortality , Mutation , Pneumonia, Viral/mortality , Spike Glycoprotein, Coronavirus/genetics , Aspartic Acid , Betacoronavirus/pathogenicity , Binding Sites , COVID-19 , Glycine , Humans , Pandemics , SARS-CoV-2
2.
Biomolecules ; 12(9)2022 09 06.
Article in English | MEDLINE | ID: covidwho-2273374

ABSTRACT

Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded ß-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.


Subject(s)
Methyltransferases , S-Adenosylmethionine , Amino Acid Sequence , Aspartic Acid , Lysine/genetics , Methyltransferases/metabolism , Phylogeny , S-Adenosylmethionine/metabolism , Water
3.
Int J Immunopathol Pharmacol ; 36: 3946320221133952, 2022.
Article in English | MEDLINE | ID: covidwho-2064535

ABSTRACT

OBJECTIVES: To evaluate the ABO blood type and indirect bilirubin to predict early mortality in adults with severe COVID-19. METHODS: This retrospective observational study was conducted on 268 adult patients with laboratory-confirmed COVID-19 who had attended the intensive care unit (ICU), Quena general hospital and Luxor International Hospital, and other hospitals or centers for the treatment of COVID-19, during the period from January 2021 till December 2021. RESULTS: Relation between mortality and ABO group were highly significant, as we found non-O blood group with more risk of early mortality and intensive care unit admission ICU. There were significant differences between dead and alive cases as regards platelets, white blood cells WBCs (neutrophil, lymphocyte), albumin, liver enzymes aspartate transeferase (AST), alanine transferase (ALT), total direct and indirect bilirubin, creatinine, and urea. CONCLUSION: There was a highly significant relation between dead cases and ABO blood group as between the O and non-O groups; also, group O was associated with less severe manifestations and or ventilation and less mortality in patients with severe COVID-19 infection. Direct bilirubin >0.5 was found to be the best predictor for mortality in cases with COVID-19 so indirect bilirubin may be considered a good protector against complications of the infection.


Subject(s)
COVID-19 , ABO Blood-Group System , Alanine , Alanine Transaminase , Albumins , Aspartic Acid , Bilirubin , Creatinine , Humans , Phenotype , Retrospective Studies , SARS-CoV-2 , Urea
4.
J Hazard Mater ; 440: 129775, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-1983444

ABSTRACT

Microbially derived dissolved organic nitrogen (mDON) is a major fraction of effluent total nitrogen at wastewater treatment plants with enhanced nutrient removal, which stimulates phytoplankton blooms and formation of toxic nitrogenous disinfection by-products (N-DBPs). This study identified denitrifiers as major contributors to mDON synthesis, and further revealed the molecular composition, influential factors and synthetic microorganisms of denitrification-derived mDON compounds leading to N-DBP formation. The maximum mDON accumulated during denitrification was 8.92% of converted inorganic nitrogen, higher than that of anammox (4.24%) and nitrification (2.76%). Sodium acetate addition at relatively high C/N ratio (5-7) favored mDON formation, compared with methanol and low C/N (1-3). Different from acetate, methanol-facilitated denitrification produced 13-69% more lignin-like compounds than proteins using Orbitrap LC-MS. The most abundant N-DBPs formed from denitrification-derived mDON were N-nitrosodibutylamine and dichloroacetonitrile (13.32 µg/mg mDON and 12.21 µg/mg mDON, respectively). Major amino acids, aspartate, glycine, and alanine were positively correlated with typical N-DBPs. Biosynthesis and degradation pathways of these N-DBP precursors were enriched in denitrifiers belonging to Rhodocyclaceae, Mycobacteriaceae and Hyphomicrobiaceae. As intensive disinfection is applied at worldwide wastewater treatment plants during COVID-19, carbon source facilitated denitrification should be better managed to reduce both effluent inorganic nitrogen and DON, mitigating DON and N-DBP associated ecological risks in receiving waters.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Water Purification , Alanine , Aspartic Acid , Carbon , Denitrification , Disinfection , Dissolved Organic Matter , Glycine , Humans , Lignin , Methanol , Nitrogen/chemistry , Sodium Acetate , Wastewater/analysis , Water Pollutants, Chemical/analysis
5.
Nature ; 609(7928): 785-792, 2022 09.
Article in English | MEDLINE | ID: covidwho-1972633

ABSTRACT

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Subject(s)
Aspartic Acid , Caspase 6 , Coronavirus Infections , Coronavirus , Cysteine , Host-Pathogen Interactions , Virus Replication , Animals , Apoptosis , Aspartic Acid/metabolism , Caspase 6/metabolism , Coronavirus/growth & development , Coronavirus/pathogenicity , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Cricetinae , Cysteine/metabolism , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Humans , Interferons/antagonists & inhibitors , Interferons/immunology , Lung/pathology , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Survival Rate , Weight Loss
6.
Hepatology ; 75(5): 1194-1203, 2022 05.
Article in English | MEDLINE | ID: covidwho-1894592

ABSTRACT

BACKGROUND AND AIMS: Data on the use of intravenous L-ornithine L-aspartate (LOLA) in the treatment of overt HE (OHE) is limited. We evaluated the role of intravenous LOLA in patients of cirrhosis with OHE grade III-IV. APPROACH AND RESULTS: In a double-blind randomized placebo-controlled trial, 140 patients were randomized to a combination of LOLA, lactulose, and rifaximin (n = 70) or placebo, lactulose, and rifaximin (n = 70). LOLA was given as continuous intravenous infusion at a dose of 30 g over 24 h for 5 days. Ammonia levels, TNF-α, ILs, and endotoxins were measured on days 0 and 5. The primary outcome was the improvement in the grade of HE at day 5. Higher rates of improvement in grade of HE (92.5% vs. 66%, p < 0.001), lower time to recovery (2.70 ± 0.46 vs. 3.00 ± 0.87 days, p = 0.03), and lower 28-day mortality (16.4% vs. 41.8%, p = 0.001) were seen in the LOLA group as compared with placebo. Levels of inflammatory markers were reduced in both groups. Significantly higher reductions in levels of blood ammonia, IL-6, and TNF-α were seen in the LOLA group. CONCLUSIONS: Combination of LOLA with lactulose and rifaximin was more effective than only lactulose and rifaximin in improving grades of HE, recovery time from encephalopathy, with lower 28-day mortality.


Subject(s)
Hepatic Encephalopathy , Ammonia , Aspartic Acid/therapeutic use , Humans , Lactulose/therapeutic use , Liver Cirrhosis/complications , Liver Cirrhosis/drug therapy , Ornithine , Rifaximin/therapeutic use , Tumor Necrosis Factor-alpha
7.
World J Gastroenterol ; 28(16): 1671-1680, 2022 Apr 28.
Article in English | MEDLINE | ID: covidwho-1855874

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has a spectrum of clinical syndromes with serious involvement of the lung and frequent effection of the liver and hemostatic system. Blood biomarkers are affordable, rapid, objective, and useful in the evaluation and prognostication of COVID-19 patients. AIM: To investigate the association between aspartate transferase-to-platelet ratio index (APRI) and in-hospital mortality to develop a COVID-19 mortality prediction model. METHODS: A multicenter cohort study with a retrospective design was conducted. Medical records of all consecutive adult patients admitted to Al-Azhar University Hospital (Assiut, Egypt) and Chest Hospital (Assiut, Egypt) with confirmed COVID-19 from July 1, 2020 to October 1, 2020, were retrieved and analyzed. The patient cohort was classified into the following two categories based on the APRI: (1) COVID-19 presenting with APRI ≤ 0.5; and (2) COVID-19 presenting with APRI (> 0.5 and ≤ 1.5). The association between APRI and all-cause in-hospital mortality was analyzed, and the new model was developed through logistic regression analyses. RESULTS: Of the 353 patients who satisfied the inclusion criteria, 10% were admitted to the intensive care unit (n = 36) and 7% died during the hospital stay (n = 25). The median age was 40 years and 50.7% were male. On admission, 49% had aspartate transferase-dominant liver injury. On admission, APRI (> 0.5 and ≤ 1.5) was independently associated with all-cause in-hospital mortality in unadjusted regression analysis and after adjustment for age and sex; after stepwise adjustment for several clinically relevant confounders, APRI was still significantly associated with all-cause in-hospital mortality. On admission, APRI (> 0.5 and ≤ 1.5) increased the odds of mortality by five-times (P < 0.006). From these results, we developed a new predictive model, the APRI-plus, which includes the four predictors of age, aspartate transferase, platelets, and serum ferritin. Performance for mortality was very good, with an area under the receiver operating curve of 0.90. CONCLUSION: APRI-plus is an accurate and simplified prediction model for mortality among patients with COVID-19 and is associated with in-hospital mortality, independent of other relevant predictors.


Subject(s)
COVID-19 , Adult , Aspartate Aminotransferases , Aspartic Acid , Biomarkers , Blood Platelets , Cohort Studies , Female , Humans , Liver Cirrhosis , Male , Platelet Count , Retrospective Studies , Risk Factors , Transferases
8.
J Mol Cell Biol ; 13(10): 712-720, 2021 12 30.
Article in English | MEDLINE | ID: covidwho-1319185

ABSTRACT

The coronavirus diseases 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 has caused more than 140 million infections worldwide by the end of April 2021. As an enveloped single-stranded positive-sense RNA virus, SARS-CoV-2 underwent constant evolution that produced novel variants carrying mutation conferring fitness advantages. The current prevalent D614G variant, with glycine substituted for aspartic acid at position 614 in the spike glycoprotein, is one of such variants that became the main circulating strain worldwide in a short period of time. Over the past year, intensive studies from all over the world had defined the epidemiological characteristics of this highly contagious variant and revealed the underlying mechanisms. This review aims at presenting an overall picture of the impacts of D614G mutation on virus transmission, elucidating the underlying mechanisms of D614G in virus pathogenicity, and providing insights into the development of effective therapeutics.


Subject(s)
COVID-19/transmission , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Aspartic Acid/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Glycine/genetics , Humans , Molecular Epidemiology , Mutation , SARS-CoV-2/genetics , Severity of Illness Index , Time Factors
9.
Biochem Biophys Res Commun ; 538: 108-115, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1139450

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped virus which binds its cellular receptor angiotensin-converting enzyme 2 (ACE2) and enters hosts cells through the action of its spike (S) glycoprotein displayed on the surface of the virion. Compared to the reference strain of SARS-CoV-2, the majority of currently circulating isolates possess an S protein variant characterized by an aspartic acid-to-glycine substitution at amino acid position 614 (D614G). Residue 614 lies outside the receptor binding domain (RBD) and the mutation does not alter the affinity of monomeric S protein for ACE2. However, S(G614), compared to S(D614), mediates more efficient ACE2-mediated transduction of cells by S-pseudotyped vectors and more efficient infection of cells and animals by live SARS-CoV-2. This review summarizes and synthesizes the epidemiological and functional observations of the D614G spike mutation, with focus on the biochemical and cell-biological impact of this mutation and its consequences for S protein function. We further discuss the significance of these recent findings in the context of the current global pandemic.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution/genetics , Aspartic Acid/genetics , Binding Sites/genetics , Glycine/genetics , Humans , Mutation , Protein Domains/genetics
10.
J Clin Neurosci ; 87: 153-155, 2021 May.
Article in English | MEDLINE | ID: covidwho-1129084

ABSTRACT

Cognitive impairment has recently attracted researchers as one of the possible neuropsychiatric manifestations of COVID-19, although how the infection perpetuates impairment of cognitive functions is still obscure. We presented a 29-year-old male patient with COVID-19 who developed new-onset transient attention deficit and memory problems following a SARS-CoV-2 infection. Structural neuroimaging was normal. MR-spectroscopy (MRS) of the bilateral DLPFC revealed significant for decreased levels of N-acetylaspartate (NAA), glutamate, and glutamate/glutamine ratio. After a follow-up without any medical treatment but with suggestions of memory exercises for three months a control MRS screening of DLPFC showed improved levels of NAA, glutamate, and glutamate/glutamine ratio. This report may suggest that cognitive deficits in SARS-CoV-2 infection can result from glutamatergic dysfunction with decreased NAA and glutamate levels in bilateral DLPFC.


Subject(s)
Aspartic Acid/analogs & derivatives , COVID-19/metabolism , Cognitive Dysfunction/metabolism , Glutamic Acid/metabolism , Prefrontal Cortex/metabolism , Adult , Aspartic Acid/metabolism , COVID-19/complications , COVID-19/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Humans , Magnetic Resonance Spectroscopy/methods , Male , Prefrontal Cortex/diagnostic imaging , Signal Transduction/physiology
11.
Biochem Biophys Res Commun ; 538: 104-107, 2021 01 29.
Article in English | MEDLINE | ID: covidwho-1125671

ABSTRACT

The development of the SARS-CoV-2 pandemic has prompted an extensive worldwide sequencing effort to characterise the geographical spread and molecular evolution of the virus. A point mutation in the spike protein, D614G, emerged as the virus spread from Asia into Europe and the USA, and has rapidly become the dominant form worldwide. Here we review how the D614G variant was identified and discuss recent evidence about the effect of the mutation on the characteristics of the virus, clinical outcome of infection and host immune response.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/virology , Evolution, Molecular , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Aspartic Acid/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Glycine/genetics , Humans , Immunogenicity, Vaccine , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
12.
Infect Genet Evol ; 91: 104801, 2021 07.
Article in English | MEDLINE | ID: covidwho-1116816

ABSTRACT

Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) has first emerged from China in December 2019 and causes coronavirus induced disease 19 (COVID-19). Since then researchers worldwide have been struggling to detect the possible pathogenesis of this disease. COVID-19 showed a wide range of clinical behavior from asymptomatic to severe acute respiratory disease syndrome. However, the etiology of susceptibility to severe lung injury is not yet fully understood. Angiotensin-converting enzyme1 (ACE1) convert angiotensin I into Angiotensin II that was further metabolized by ACE 2 (ACE2). The binding ACE2 receptor to SARS-CoV-2 facilitate its enter into the host cell. The interaction and imbalance between ACE1 and ACE2 play a crucial role in the pathogenesis of lung injury. Thus, the aim of this study was to investigate the association of ACE1 I/D polymorphism with severity of Covid-19. The study included RT-PCR confirmed 269 cases of Covid-19. All cases were genotyped for ACE1 I/D polymorphism using polymerase chain reaction and followed by statistical analysis (SPSS, version 15.0). We found that ACE1 DD genotype, frequency of D allele, older age (≥46 years), unmarried status, and presence of diabetes and hypertension were significantly higher in severe COVID-19 patient. ACE1 ID genotype was significantly independently associated with high socio-economic COVID-19 patients (OR: 2.48, 95% CI: 1.331-4.609). These data suggest that the ACE1 genotype may impact the incidence and clinical outcome of COVID-19 and serve as a predictive marker for COVID-19 risk and severity.


Subject(s)
Amino Acid Substitution , COVID-19/epidemiology , COVID-19/genetics , Genetic Predisposition to Disease , Peptidyl-Dipeptidase A/genetics , Polymorphism, Genetic , SARS-CoV-2/pathogenicity , Adult , Age Factors , Aged , Alleles , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Aspartic Acid/genetics , Aspartic Acid/metabolism , Asymptomatic Diseases , COVID-19/mortality , COVID-19/virology , Comorbidity , Diabetes Mellitus , Female , Gene Expression Regulation , Gene Frequency , Host-Pathogen Interactions/genetics , Humans , Hypertension , India/epidemiology , Isoleucine/genetics , Isoleucine/metabolism , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Risk Factors , SARS-CoV-2/physiology , Severity of Illness Index , Survival Analysis
13.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064909

ABSTRACT

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Subject(s)
Amino Acid Substitution , COVID-19/transmission , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Aspartic Acid/analysis , Aspartic Acid/genetics , COVID-19/epidemiology , Genome, Viral , Glycine/analysis , Glycine/genetics , Humans , Mutation , SARS-CoV-2/growth & development , United Kingdom/epidemiology , Virulence , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL